2月予約スタートダッシュキャンペーン!
2月予約スタートダッシュキャンペーン!
※現小6生の受付は終了させていただきました
塾講師・プロ家庭教師の皆様、あなたの時給を翌営業日までに一発診断!
【無料音声教材】物語が得意になる語彙600
2025年度 物語出題予想ベストテン!
SAPIX新4年第2回入室テスト傾向と対策!
SAPIX新4年第2回入室テスト算数予想問題!
【巣鴨中学】攻略法更新しました!
日能研算数対策!5.4年第13回
予シリ算数解説!5.4年13回
【月謝改訂のお知らせ】
弊社は訪問型の家庭教師となります。
第2回は比(2)です。比例式と比例、逆比と反比例、倍数算を学習します。まずは、比例式の学習です。比例式とは、2組の比が等号で結ばれた式のことで、比の値が等しくなっています。ここで学習する比例式は、比の問題を解く場面において、とても利用度の高い計算方法です。分数・小数のかけ算・わり算も含めて、比例式の性質(外項の積は内項の積に等しい)を使えるようにトレーニングしておきましょう。また、倍数算は、比の1あたりの量が異なった2組の比を、1あたりの量を等しく(統一)させて考える問題です。なお、分数は、分子/分母の形で表示します。
比例式と比例について学習します。予習シリーズ17ページの説明を参照してください。
例えば、単価(1つの値段)の等しい品物を買った時の個数と代金は、個数が2倍、3倍、…になると、代金も2倍、3倍、…になりますが、このような関係を比例といいます。私たちの身の回りにある2つの数量の関係において、最も多くある関係です。
「必修例題1」は、比例式を使って、未知数を求める問題です。
「必修例題2」は、比例式を使って解く文章題です。
単価×個数=代金より、個数が等しいならば、単価と代金は比例します。単価の比が45:30=3:2であれば、代金の比も3:2で、差が75円です。よって、75÷(3−2)=75円が比の1つ分とわかります。75円×3=225円より、持っていったお金は225円です。
逆比と反比例について学習します。予習シリーズ18ページの説明を参照してください。逆比について注意してください。逆比とは、逆数(この説明もきちんと理解してください)の比ということで、比の前項と後項を逆にすることではありません。
「必修例題3」は、積が等しい関係から、逆比を考える問題です。
「必修例題4」は、逆比を利用して解く文章題です。
「必修例題5」は、食塩水の問題です。食塩水の重さ×濃さ=食塩の重さ、において食塩の重さ(積)が変わらないときには、食塩水の重さと濃さは反比例の関係になります。反比例については、予習シリーズ20ページの説明を参照してください。
食塩水に水を加えても、食塩の重さは変わりません。濃さの比、8%;6%=4:3の逆比である、1/4:1/3=3:4が、食塩水の重さの比となります。食塩水の重さの違いは、100gの水を加えたことによるものです。よって、100g÷(4−3)=100gが比の1つ分です。100×3=300より、はじめ、容器には300gの食塩水が入っていました。
倍数算について、学習します。倍数算は、比の1つ分が異なる、2組の比において、共通の1つ分を作って(統一して)考える問題です。共通にするために、最小公倍数を利用します。
「必修例題6」は、倍数算の代表である、和が変わらない問題と差が変わらない問題です。
第2回は倍数と公倍数です。倍数という言葉からも何倍かしてできる数であることがわかると思います。第1回の約数の場合と同様、倍数を求める、最小公倍数を求めるといった、基礎のトレーニングが今後の学習に必要となります。また、倍数の個数を求める計算もしっかり理解してください。
「必修例題1」は、倍数の仕組みを考える問題です。
公倍数と最小公倍数について学習します。予習シリーズ16、17ページの説明をよく読んで、理解しましょう。連除法による最小公倍数の求め方ですが、注意すべきは、3数以上の連除法で、最大公約数のときと異なる部分があることです。違いを確実に学習しましょう。
「必修例題2」は、公倍数の基本となる問題です。
「必修例題3」は、3数の最大公約数と最小公倍数を求める問題です。
どちらも連除法を利用します。最大公約数については、第1回で学習した通りに求めます。注意すべきは、最小公倍数の場合です。3数(以上)の場合は、2数が共通にわれるときは、わっていきます。このとき、われない数は、そのまま下へおろします。そのうえで、連除法の左に表れたわった数と、一番下に残った数をすべてかけ算した結果が、最小公倍数です。予習シリーズ17ページの解き方を参照してください。答えは、最大公約数が6、最小公倍数は1512です。
「必修例題4」は、すこし複雑な公倍数の問題です。公倍数の問題では、整数の集まりをグループに分けて表す図(ベン図)で考えると、理解しやすくなります。予習シリーズ18ページの解き方にあるベン図を参照してください。
われわれ中学受験鉄人会のプロ家庭教師は、常に100%合格を胸に日々研鑽しております。ぜひ、大切なお子さんの合格の為にプロ家庭教師をご指名ください。
頑張っている中学受験生のみなさんが、志望中学に合格することだけを考えて、一通一通、魂を込めて書いています。ぜひご登録ください!メールアドレスの入力のみで無料でご登録頂けます!