2月予約スタートダッシュキャンペーン!
第13回は『仕事算』です。仕事算は、大きく2通りあります。1つ目は、ある仕事の全体量を1として各人のする仕事量を表して、考える問題(必修問題1〜3)。2つ目は、各人の仕事量を1として全体の仕事量を表して、考える問題(必修例題4、帰一算ともいいます)です。また、全体量が増加しつつ、減少していく問題(ニュートン算)も学習します。
仕事算の基本的な解法の流れは、次のようになります。まず、仕事の全体量を1として、各人の1日の仕事量を求め、比で表します。次に、この比を利用して、仕事の全体量を新たに作る、というものです。
「必修問題1」では、A 1人で20日かけてこの仕事をしますので、1日に、1÷20=1/20の仕事量です。同様に、B 1人で30日かけてこの仕事をしますので、1日に,1÷30=1/30の仕事量です。よって、1日あたりの仕事量の比は、A:B=1/20:1/30=3:2となります。この比を利用して、仕事の全体量は、A 1人で20日かかるので、3×20日=60となります (当然にBでも2×30日=60) 。ここまでが準備です。(1)AとBの2人がいっしょに仕事をすると、1日に3+2=5の仕事ができます。よって、60÷5=12より、12日かかります。(2)はじめの8日間で、3×8=24より、Aは24の仕事をしますので、60−24=36の仕事が残ります。これをBは、36÷2=18より、18日間かかりますので、8+18=26より、合計26日かかります。
「必修例題2」では、準備として、1日の仕事量の比 A:(A:B)=1/24:1/15=5:8より,Aの仕事量を5すると、Bの仕事量は8−5=3、全体の仕事量は5×24=120となります。(1)120÷3=40より、B 1人で40日かかります。(2)Aがa日間仕事をすると、5×aの仕事量、Bがb日間仕事をすると、3×bの仕事量、2人合わせて、28日間で120の仕事をすることになります。かける数量の合計が与えられ、かけ算の合計が与えられているので、つるかめ算を使って解きます。Bが28日間仕事をしたことにして、(120−3×28)÷(5−3)=18より、Aは18日仕事をしたことになります。
「必修例題3」では、準備として、1日の仕事量の比 A:B:C=1/20:1/60:1/30=3:1:2より、Aの仕事量を3とすると、Bの仕事量は1、Cの仕事量は2、全体の仕事量は3×20=60となります。ここで、Aが4日休まず、Bが6日休まなかったとすると、全体の仕事量は 3×4+1×6=18増えて、60+18=78になります。これを、1日に3人合わせて3+1+2=6ずつ仕事をすることになりますので、78÷6=13より、13日となります。
「必修例題5」は、上に述べましたように、増加(わき出す水)する量があり、減少(ポンプでくみ出す)する量がある問題で、ニュートン算といわれる問題です。ニュートン算は、「(減少量−増加量)×時間=はじめの量」の形に整頓すると、考えやすくなります。ただし、ここの減少量・増加量は時間単位1あたりの量を表します。問題の300Lがはじめの量、毎分5Lが増加量、ポンプ1台で1分ごとにくみ出す量が減少量となります。(1)よって、ポンプ1台で1分ごとにくみ出す量を□Lとして整頓すると、(□−5)×30分=300Lとなりますので、逆算をして、300÷30+5=15より、ポンプ1台がくみ出す量は、毎分15Lとなります。(2)くみ出す時間を□分として、(15×2−5)×□分=300Lですから、300÷25=12より、12分かかります。
第13回は『割合(1)』です。たとえば、「10の3倍は30」という文章において、10をもとにする量、3倍を割合、30をくらべる量とします。言葉を使って式にすると、(もとにする量)×(割合)=(くらべる量)となります。文章を読む場合、「AのBはCです」という形に整頓し直して考えると良いです。この場合、もとにする量=A、割合=B、くらべる量=Cとなります。特に、「Aの〜」と「の」がついた部分がもとにする量です。
「必修例題3」(1)では、「太郎君の年令はお父さんの年令の2/7です。」を「お父さんの年令の2/7は太郎君の年令」と読み直すと、A(もとにする量)=お父さんの年令、B(割合)=2/7、C(くらべる量)=太郎君の年令となります。太郎君の年令を□才として式にすると、42×2/7=□となり、□=12ですから、太郎君の年令は12才です。(2)同様に、「去年のねだんの1.6倍は今年のねだん」と読み直せますので、A=去年のねだん、B=1.6、C=今年のねだんです。今年のねだんを□円として式にすると、750×1.6=□となり、□=1200ですから、今年のねだんは1200円です。
「必修例題4」では、「クラス全体の人数の2/9が8人」ということになりますので、A=クラス全体の人数、B=2/9、C=8となります。クラス全体の人数を□人として式にすると、□×2/9=8となり、□=8÷2/9=36ですから、クラスの人数は36人です。
単位あたりの量の問題です。単位あたりの量は、わり算の商=(わる数1)分の(わられる数) を利用して考えます。たとえば、「450円を9人で分ける」という問題は450円÷9=50円となりますが、この50円は1人あたりの金額ということになるのです。
「必修例題5」(1)では、1mあたりの重さを考えるのですから、m単位の数で、㎏単位の数をわることになります。2.7÷3=0.9より、針金1mの重さは0.9㎏です。(2)では、1Lあたりの値段を考えるのですから、L単位の数で、円単位の数を割ります。420÷2・1/3=180より、ジュース1Lは180円です。
われわれ中学受験鉄人会のプロ家庭教師は、常に100%合格を胸に日々研鑽しております。ぜひ、大切なお子さんの合格の為にプロ家庭教師をご指名ください。
頑張っている中学受験生のみなさんが、志望中学に合格することだけを考えて、一通一通、魂を込めて書いています。ぜひご登録ください!メールアドレスの入力のみで無料でご登録頂けます!