2月予約スタートダッシュキャンペーン!
2月予約スタートダッシュキャンペーン!
※現小6生の受付は終了させていただきました
塾講師・プロ家庭教師の皆様、あなたの時給を翌営業日までに一発診断!
【無料音声教材】物語が得意になる語彙600
2025年度 物語出題予想ベストテン!
SAPIX新4年第2回入室テスト傾向と対策!
SAPIX新4年第2回入室テスト算数予想問題!
【巣鴨中学】攻略法更新しました!
日能研算数対策!5.4年第13回
予シリ算数解説!5.4年13回
【月謝改訂のお知らせ】
弊社は訪問型の家庭教師となります。
第4回は『平面図形と比(2)』です。まずは、合同と相似から学習します。2つの図形において、形も大きさも等しい図形を合同といいます。また、形は同じですが、大きさが異なる図形を相似といいます。どのような場合に、合同や相似となるのかという条件があり、これらの条件を、それぞれ合同条件、相似条件といいます。予習シリーズ37ページにある条件をおぼえておきましょう。
「必修例題1」は、合同条件の利用と、合同な図形における角度を求める問題です。
「必修例題2」は、縮尺の問題です。縮尺は地図などに使われます。実際の長さを地図などに表したものを縮図といいますが、この場合の小さくする割合を縮尺といいます。縮尺は、通常、分数を使用しますが、この分子の数が地図上の長さ、分母の数が実際の長さを表しています。なお、メルマガでは、分数は分子/分母の形で表します。
相似な図形について、学習します。相似な図形において、対応する(重なる)辺の長さの比を相似比といいます。また、相似な図形の面積比は、相似比の数を2回ずつかけた数の比になります。予習シリーズ38ページの説明を参照してください。なお、相似な三角形は、平行線を利用して作られることがとても多くあります。代表的なものとして、ピラミッド型の相似、クロス型の相似があります。こちらも、予習シリーズ39ページの説明を参照してください。
「必修例題3」は、相似な三角形の辺の長さを求める問題です。
「必修例題4」は、相似な三角形の面積比の問題です。
「必修例題6」は、何組かの相似な三角形が入った図形の問題です。 DEとBCの平行より、三角形ADEと三角形ABCは相似な三角形です。また、ABとEFの平行より、三角形ABCと三角形EFCも相似な三角形です。ここから三角形ABCを基準として、三角形ADEと三角形EFCも相似な三角形となります。
「必修例題7」も、何組かの相似な三角形が入った問題です。
正方形は、対辺が平行になっていますので、相似な三角形が何組かできます。どの相似な三角形を利用するかが重要となります。
第4回は『円(1)』です。円についての用語や円の性質を学習します。予習シリーズ31ページの説明をしっかり理解して覚えましょう。その性質を利用して、円の中にかかれた三角形や正多角形の角度を求める問題を考えます。
「必修例題1」は、円の半径と直径の関係から長さの求める問題です。
「必修例題2」は、円の中にある三角形の内角の1つの大きさを求める問題です。
円の半径は、すべて同じ長さですから、2つの半径を使った三角形OABは二等辺三角形です。よって、角OBA=角OAB=42°ですから、χの大きさは、三角形の内角の和である180°から、42°を2つ引いた大きさです。180−42×2=96より、χ=96°です。
「必修例題3」も、円の中にある三角形の内角の1つの大きさを求める問題です。
前例題と同様に、半径OAとOCを使った三角形OACは二等辺三角形です。よって、角OCA=角OAC=38°で、外角の定理により、角BOC=38×2=76°です。また、半径OBとOCを使った三角形OBCも二等辺三角形ですから、角OCB=OBCです。したがって、三角形OBCの内角の和は、76+χ×2=180°です。(180−76)÷2=52より、χ=52°です。
なお、予習シリーズ33ページにある、かこみの中の説明は、今後も利用できる内容ですので理解しておきましょう。結果的には、直径を1辺として、円の内側に接した三角形を作ると、直径に向かい合っている角の大きさは、必ず直角(90°)になります。この性質を利用して、改めて必修例題3を解きます。角ACB=90°ですから、三角形ABCの内角の和は、38+90+χ=180°より、χ=180−(38+90)=52°と求められます。
「必修例題4」は、円の中にある正多角形に関する問題です。正多角形とは辺の長さやそれぞれの内角の大きさがすべて等しい図形をいいます。
円周を5等分する点と、円の中心を結ぶ半径によって、中心のまわりの角360°は、5等分されます。χは、その2つ分です。360÷5×2=144より、χ=144°です。OとCを結ぶ半径をひきます。三角形OAC、OAB、OBCは、すべて二等辺三角形です。そして、角AOCは角AOBと等しく、350÷5×2=144°、角BOC=350÷5×1=72°です。これより、三角形OACの内角の1つである角OCAは、(180−144)÷2=18°、三角形OBCの内角の1つである角OCBは、(180−72)÷2=54°です。y=角OCA+角OCBですから、18+54=72より、y=72°です。
われわれ中学受験鉄人会のプロ家庭教師は、常に100%合格を胸に日々研鑽しております。ぜひ、大切なお子さんの合格の為にプロ家庭教師をご指名ください。
頑張っている中学受験生のみなさんが、志望中学に合格することだけを考えて、一通一通、魂を込めて書いています。ぜひご登録ください!メールアドレスの入力のみで無料でご登録頂けます!