ログイン
新規登録
お申込の流れ

No.1187 早稲アカ・四谷大塚予習シリーズ算数上対策ポイント 6年生(第17回)4・5年生(第18回)

<算数 6年上 第17回>

 第17回は『速さ(2)』です。特殊な速さの問題を学習します。流水算や通過算については、復習となります。その他、歩数と歩幅の問題、エスカレーターや動く歩道といった問題を学習します。なお、分数は、分子/分母の形で、帯分数は、(整数と分子/分母)の形で表します。

<今回のポイント>

 歩幅と歩数の問題やエスカレーターの問題といった、特殊な問題をあつかいますが、速度問題の仕組みは基本的に変わりません。速度と比の関係を確認しながら、学習していきましょう。

【対策ポイント1】
[必修例題1]

 歩幅と歩数の問題です。用語の確認ですが、「歩幅」とは1歩分の長さを表し、「歩数」とは歩いた数を表します。そして、歩幅×歩数=距離となります。兄が4歩あるく距離を、弟は5歩であるきます。また、兄が4歩あるく間に、弟は3歩あるきます。
(1) 兄と弟のあるく速さの比を求める問題です。兄が4歩であるく距離を1とすると、兄の1歩の長さは1/4です。そして、同じ距離を弟は5歩であるきますから、弟の1歩の長さは1/5です。よって、歩幅の比は,兄:弟=1/4:1/5=5:4 となります。また、同じ時間に兄は4歩、弟は3歩あるきますので、距離としては、兄は(5×4=)20、弟は(4×3=)12となります。歩幅×歩数=距離です。「同じ時間」のとき,(進む)距離の比=速さの比ですから、20:12=5:3 より、兄と弟のあるく速さの比は、5:3 です。
(2) 兄が出発してから弟に追いつくまでの時間で、兄:弟の距離比は5:3で、差である2の距離を弟は60歩であるきます。予習シリーズ216ページの解き方にある線分図を参照してください。60÷(5-3)×5=150 より、弟は出発してから150歩進んだ地点で兄に追いつかれます。歩幅×歩数=距離により、この距離は、4×150=600 です。よって、この600の距離を兄は5の歩幅で進みますから、600÷5=120 より、兄は120歩あるいて弟に追いつきます。

【対策ポイント2】
[必修例題2]

 流水算の問題です。
(1) 2地点間の距離は同じですから、時間比と速度比は逆比の関係になります。行きにかかる時間において、いつものかかる時間とある日のかかる時間の比は、3時間:2.5時間(2時間30分)=6:5 です。これより、速度比は、1/6:1/5=5:6で、この差は、川の流れの速さが毎時1km速くなったためです。よって、1÷(6-5)×5=5 より、いつもの行き(下り)の速さは毎時5kmとわかります。5×3=15 より、2地点間の距離は15kmです。また、この距離から、いつもの帰り(上り)の速さは15÷5=3 より、毎時3kmで、ある日の帰りの速さは、(3-1=)毎時2kmです。よって、15÷2=7.5 より、ある日の帰りにかかる時間は、7時間30分です。
(2) AB間の距離は48kmで、AからBへの上りの速さは時速12kmですから、48÷12=4 より、4時間かかります。また、往復7時間ですので、下りの時間は(7-4=)3時間です。そして、モーターボートの速さをおそくした日に、上りにかかった時間は、4×4/3=16/3 より、16/3時間かかっています。これらの時間の比から、逆比により速さの比が求められます。いつもの上り:いつもの下り:ある日の上り=1/4:1/3:3/16=12:16:9 です。ここで、いつもの上り下りの速さより、和差算を使って、川の流れの速さは、(16-12)÷2=2で、ある日もかわりません。ですから、ある日の下りの速さは、9+2+2=13 となります。いつもの上りの速さは、時速12kmで、これは比でも12ですから、12÷12×13=13 より、ある日の下りの速さは、時速13kmです。

【対策ポイント3】
[必修例題5]

 エスカレーターの問題です。エスカレーターの問題でのポイントは、段数が距離を表していることにあります。エスカレーターの速さを(エ)、歩く速さを(歩)と表します。
(1) 上の階までの距離(段数)は一定ですから、時間の比と速さの比は逆比の関係になります。   速さの比は、(エ):(エ)+(歩)=1/30:1/18=3:5 です。これより、(エ):(歩)=3:(5-3)=3:2 (歩)の速さ2が毎秒1段ですから、(エ)の速さ3は、(1÷2×3=)毎秒3/2段です。よって、30秒では、3/2×30=45 より、エスカレーターは45段です。
(2) (歩)が毎秒2段になりますので、(エ)+(歩)=3/2+2=7/2 より、毎秒7/2段の速さで上ります。よって、45÷7/2=(12と6/7) より、上の階に着くのは、(12と6/7)秒です。

<算数 5年上 第18回>

 第18回は『数列と数表』です。いろいろな数列について、ある数が何番目にあるか、また、何番目の数は何かを考える問題です。数列の種類によって、考え方が異なります。どんな数列なのか、どんなルールなのかを整理することを目標に学習しましょう。また、数列を表の形で表した数表問題では、表の行と列の関係を考えて進めます。

<今回のポイント>

 数列の問題の中でも、難しい数列を学習します。1つ1つ丁寧に理解していきましょう。特に、数表問題は難問ですので、繰り返しの学習をこころがけてください。

【対策ポイント1】
[例題1]

 階差数列といわれる数列の問題です。この数列は、元の数列(第1数列)の前後の数の差を書き出すと、この数列(第2数列)が等差数列になっているものです。問題の数列は、(第1)数列の前後の数の差が、(第2数列で)1、2、3、4、…と等差数列になっています。言いかえると、第1数列の数は、初めの数である1に、第2数列の1、2、3、4、…を順に加えてできた数列です。例えば、5番目の数である11は、1+(1+2+3+4)=11 と求めることができます。この仕組みにより、15番目の数は、第1数列のはじめの数である1に、第2数列の1番目の数から(15-1=)14番目までの数の和を加えることにより求められます。つまり、15番目の数は、1+(1+2+……+14)=1+(1+14)×14÷2=106です。等差数列の和の求め方を忘れていないかどうか、しっかり確かめておきましょう。

【対策ポイント2】

 群数列の応用的な問題を学習します。

[例題2]

 3の倍数でない1以上の整数を、ならべた数列です。3の倍数でない整数というところに注目して、これらの整数を3で割ってみますと、あまりが1と2の繰り返しになっています。そこで、(1,2)、(4,5)、(7,8)、……とした組(群)の群数列と考えることができます。45番目の整数は、45÷2=22あまり1 より、22組の次で、23組の1つ目の整数です。各組の1つ目は、1、4、7、……と、等差数列になっていますので、この数列の23番目が求める整数です。よって、1+3×(23-1)=67 より、左から45番目の整数は、67です。

[例題3]

 数列のきまりを発見することが難しい問題です。この数列は、条件(3と4の倍数を除いた数列)より、3と4の最小公倍数12を考え、1から順に、それぞれの数を12で割ったときの余りが、{1、2、5、7、10、11}の周期となる数を列にしたものです。よって、{1、2、5、7、10、11}を第1組として、以下{13、14、17、19、22、23}、{25、26、…}、…と、第1組のそれぞれの数に12を加えてできる、各組の個数が6個となる群数列です。例えば、第2組の1番目は1+12=13、2番目は2+12=14、また第3組の1番目は1+12×2=25、…となります。
(1) 89÷12=7あまり5です。これは、商(わり算の答え)の7に1を加えた8組で、あまりの5は、3番目を表しています(第1組で5は3番目にある)。あまりの5は、5番目を表しているわけではない、ことに注意してください。6個ずつ7組あって、その次の組の3個を合計します。6×7+3=45より、89は45番目の数です。
(2) (1)の逆問題です。100番目は、100÷6=16あまり4ですので、(16+1=)17組の4番目の数です。第1組の4番目の数は7ですから、7に、12を(17-1=)16回かけた数を加えた数です。よって、7+12×16=199より、100番目の数は199です。わり算の商とあまりが何を表しているかを、理解しましょう。また、あまりのあつかいが重要な問題ですので、あまりのあるわり算でミスがないように気をつけましょう。

【対策ポイント3】

 数表問題を学習します。ここでは、四角数、三角数が使われることが多いので、まず、予習シリーズ195ページにある枠内の説明をよく読んで理解しましょう。

[例題4]

 四角数(ご石を正方形の形に並べたときの個数で、平方数とも言われます)の数表問題です。数の並び方から、各行の左から1列目の数が四角数(平方数)になっていることに気づきましょう。左から1列目の数は,各行の「行数」を2回ずつかけた数でできています。1行目は1×1=1、2行目は2×2=4、3行目は3×3=9、…となっています。このように、同じ数を2回かけてできる数を平方数と言います。また、表の中の数の進み方を確認して解いていきましょう。
(1) 6行目の1列目の整数は、6×6=36 より、36です。
(2) 5行目の11列目の整数は、11×11の枠の上にあります。予習シリーズ196ページの解き方にある図(モデル図)を参照してください。10×10の枠の最後(10行1列の10×10=)100の次から5番目の整数となります。よって、100+5=105 より、5行目の11列目にある整数は、105です。
(3) 62に近い平方数を考えることから進めます。8×8=64が近い平方数で、64は8行目の1列目です。62は、64-62+1=3で、ここから、62は、8行目の3列目にあります。

[例題5]

 三角数(ご石を三角形の形に並べたときの個数)の数表問題です。この数表は、右上から左下へ45度の角度の線上に数が増えています。そこで、各行の左から1列目の数に注目します。2行目は1+2=3、3行目は1+2+3=6、4行目は1+2+3+4=10,…となっています。このように、整数の1から順に整数を連続して加えてできる数を三角数と言います。三角数は、等差数列の和を求めて作ります。なお、予習シリーズ197ページの解き方にある図を参照してください。
(1) 7行目の1列目の整数は、1から7までの整数の和となりますから、等差数列の和を求める計算で、(1+7)×7÷2=28 より、28です。三角数の数表は、初めに述べましたように、数の並び方が右上から左下へ向かう45度の傾きをもつ線上に並びます(右下から左上に向かう問題もあります)。この45度線上にある数の「行数」と「列数」の和はつねに等しくなります。たとえば予習シリーズの解き方にある図において、4組にある{7、8、9、10}は同じ45度線上にあります。この組の各数の位置、つまり、○行目の左から△列目の数とした場合の(○+△)は、1行目(○が1)の左から4列目(△が4)の数である7が1+4=5、同様にして8が2+3=5、9が3+2=5、10が4+1=5と、すべて(○+△)が等しく5になっています。まとめますと、同じ45度線上にある各数では、(行数+列数)は等しくなります。このことを、理解しておいてください。とても煩雑ですが、丁寧に読んで理解してください。一度理解できれば解けるようになります。
(2) 4行目の6列目の整数は、(行数+列数)で、4+6=10ですから、10-1=9より、9行1列の45度線上にあります。9行1列の数は、1から9までの和で45ですので、9-4=5 より、45より5つ手前の数が求める整数です。よって、45-5=40 より4行目の6列目の整数は、40です。
(3) 60に近い三角数を求めることから進めます。1から10までの和は55(10行1列でおわる45度線)ですから、60-55=5 より、60は次の(11行1列でおわる)45度線上の上から5番目です。(行数+列数)で、11+1-5=7 より、60は、5行目の7列目の整数です。

<算数 4年上 第18回>

 第18回は『一方におきかえて解く問題』です。中学受験算数の中でも代表的な問題といわれる、つるかめ算を学習します。予習シリーズ166ページから167ページにある説明をよく読んでください。つるかめ算のイメージをつかみ、解き方の仕組みを理解しましょう。また、つるかめ算が変化した弁償(べんしょう)算も学習します。

<今回のポイント>

 つるかめ算では、1つとりかえるごとに「差」の数ずつ変わっていきますが、弁償算では、1つとりかえるごとに「和」の数ずつ変わっていきます。その違いの理由を理解することが,今回の学習では重要です。

【対策ポイント1】

 つるかめ算の問題を解く仕組みを考えましょう。

[例題1]

 つるかめ算の基本の問題です。つるとかめがいて、頭の数の合計が13で、足の数の合計が44のとき、つるは何羽いるかを考えます。手順として、問われていないかめが13匹いる(つるは0羽)と考えてスタートします。このとき、足の数の合計は、4×13=52本です。実際は44本ですから、52-44=8本少なくなければなりません。そこで、かめ1匹をつる1羽にとりかえると、足の本数が、4-2=2本少なくなりますので、8÷2=4 より、かめ4匹をつる4羽にとりかえることになります。よって、つるは4羽いました。

[例題2]

 一般的な文章題をつるかめ算で解く問題です。50円切手と80円切手を合わせて15まい買い、1000円さつを1まい出したところ、おつりが70円でした。80円切手を何まい買ったかという問題です。前問と同様、50円切手を15まい買ったときからスタートします。このときの代金は、50×15=750円ですが、実際の代金は、1000-70=930円でした。50円切手1まいを80円切手1まいにとりかえると、80-50=30円多くなります。そこで、930-750=180円多くするには、180÷30=6まいとりかえればよいことがわかります。よって,80円切手は6まい買いました。2つの量について、それぞれの1個あたりの量と個数、そして全体の量がわかっている場合に、つるかめ算が使えることになります。問題文を読んで、つるかめ算が使えることの判断ができるだけ早くできるように、練習を重ねましょう。

【対策ポイント2】

 弁償算といわれる問題を考えます。つるかめ算との違いは何かに注意しましょう。

[例題3]

 弁償算の問題です。200まいのお皿をあらう仕事で、お皿を1まいあらうごとに20円もらえます。ですが、お皿をわってしまうと、20円はもらえずに、お皿代50円を弁償しなければなりません。
(1) わったお皿のまい数で場合分けします。
(お皿をわらずに200まいあらった場合)
20×200=4000 より、4000円もらえます。
(お皿を1まいわってしまった場合)
あらったお皿99まいの分として、20×199=3980円ですが、わった1まいの弁償として50円少なくなりますので、3980-50=3930 より,3930円もらえます。
(お皿を2まいわってしまった場合)
あらったお皿98まいの分として、20×198=3960円ですが、わった2まいの弁償として(50×2=)100円少なくなりますので、3960-100=3860 より、3860円もらえます。
(2) (1)より、4000円、3930円、3860円、と、お皿を1まいわるごとに、70円ずつ少なく
なっていきます。この70円は、あらったことでもらえる20円がもらえず、弁償のための50円が少なくなりますので、20円と50円の和としての70円少なくなることを表しています。この考え方で解いてみましょう。4000-3580=420 より、お皿を1まいもわらなかった場合とくらべて、420円少なくなっています。お皿を1まいわるごとに70円少なくなりますから、420÷70=6 より、お皿を6まいわってしまいました。

[例題4]

 前問と同様、弁償算ですが、はじめにある数量(持ち点)がある問題です。はじめに得点が30点あり、1回勝つごとに5点もらえ、1回負けるごとに1点ひかれるゲームをします。このゲームを20回したときの得点が88点になりました。このときの負けた回数を求めます。まず、20回すべて勝ったときの点数を求めます。30+5×20=130点です。1回負けたとき、5点がもらえず、逆に1点ひかれますから、5+1=6点少なくなります。実際の点数を考えると、130-88=42点少なくなっていますので、42÷6=7 より、負けた回数は、7回となります。この問題では、負けた回数を求める問題でしたが、勝った回数を求める問題もありますので、間違えないように問題文をよく読みましょう。なお、勝った回数を求める場合でも、負けた回数を求めて、20回から引くことで解答します。
 つるかめ算と、弁償算のちがいをしっかりつかみ、どちらも解けるよう学習してください。

 われわれ中学受験鉄人会のプロ家庭教師は、常に100%合格を胸に日々研鑽しております。ぜひ、大切なお子さんの合格の為にプロ家庭教師をご指名ください。

メールマガジン登録は無料です!

頑張っている中学受験生のみなさんが、志望中学に合格することだけを考えて、一通一通、魂を込めて書いています。ぜひご登録ください!メールアドレスの入力のみで無料でご登録頂けます!

ぜひクラスアップを実現してください。応援しています!

ページのトップへ