塾講師・プロ家庭教師の皆様、あなたの時給を翌営業日までに一発診断!
第16回は『立体図形(2)』です。
復習テーマは、立方体・直方体、さいころの問題、柱体・すい体、回転体、投影図、くり抜きの問題など、です。新出テーマは、立体表面上の最短距離、正多角形で囲まれた立体、立体図形の影です。
回転体の問題では、出来上がりの図をかいて、体積・表面積を考えます。投影図の問題では、真上から見た図にそれぞれ何個積んであるかをかいて考えます。このような作業が必要になります。今回は、様々な場面で、自身で手を加えて図形をかいて、部分的な長さ・面積を考える必要があります。図形問題では、普段から図をかくことを心がけてください。
立体表面上の最短距離について考える問題です。
この問題では、「糸をピンと張る」、「最も短い長さ」などの条件が付いていますが、このことは、「展開図上では直線」を表すことになります。
直方体の頂点Aから頂点Bまで糸をぴんと張るとき、この糸が通過する辺上の長さを考える問題です。糸の通る面を、展開図をかいて考えますが、よっくんのセリフにありますように、立体図形全体の展開図は必要ありません。予習シリーズの解き方にある展開図を参照してください。
展開図において、三角形ACPと三角形ADBの相似を利用します。CP:DB=AC:ADです。CP:10=9:(9+6) より、CP=10×9÷15=6、よって、CPは6cmです。
正多角形で囲まれた立体について考えます。
合同な正五角形12個と、合同な正六角形20個で囲まれた立体の、辺の本数を求める問題です。数えるわけにはいきません。注意深く図を見てみると、すべての五角形、六角形が接しているので、辺が重なっていることがわかります。つまり、五角形、六角形の辺1本が2つで、この立体の辺1本になっています。
それぞれの五角形、六角形の本数の合計は、5×12+6×20=180(本)で、2本1組つまり1本として、この立体の辺になります。180÷2=90 より、この立体には辺が90本あります。
影の問題を考えます。
電灯によって、地面に垂直に立てた看板の影ができます。この看板の影の面積を求める問題です。
高さ6mの電灯から6mはなれたところに、高さ2m、はば4mの長方形の看板を地面に垂直に立てました。(問題の図)
(a) 電灯と看板の位置関係を真横から考えます。
電灯のライトの部分から地面までの長さ6mをPQとし、地面にできた辺ABの影の先端をA’とします。予習シリーズ170ページの解き方にある(図1)を参照してください。三角形PQA’と三角形ABA’は相似になります。相似比は、PQ:AB=6:2=3:1です。
(b) 電灯と看板の位置関係を真上から考えます。
電灯のある位置をQ、看板が地面にある位置をCB、看板の影をD’A’とします。同じく解き方にある(図2)を参照してください。三角形QBCと三角形QA’D’は相似になります。相似比は、QB:QA’=(3-1):3=2:3です。三角形QBC(ア)と三角形QA’D’(イ)の面積比を求めると、ア:イ=(2×2):(3×3)=4:9 で、アの面積は、6×4÷2=12 ですから、12÷4×(9-4)=15 より、影の面積は、15平方mです。
なお、影の形が台形ですので、台形の下底A’D’の長さと高さになるA’Bを相似から求めて、直接面積を求めることもよいです。
第17回は『いろいろな旅人算』です。今回は、池のまわりのような円周上の旅人算、3人以上の旅人算、2人の間の距離を表すグラフを学習します。
いろいろな旅人算を学習します。確認ポイントをしっかり理解しましょう。特に、例題6は、注意して学習してください。
円周上の旅人算を学習します。
予習シリーズ180ページの説明をよく読んで理解しましょう。2人が反対方向に同時に出発する場合は、出会うまでに進んだ距離の和は、円周1周分です。また、2人が同方向に同時に出発する場合は、早く進む人が遅く進む人に追いつくまでに進んだ距離の差は、円周1周分です。
また、距離の和を考えるときは、速度も和を使い、距離の差を考えるときは、速度も差を使うこともポイントです。
1周600mの池のまわりを、A君は分速90m、B君は分速60mで、同じ地点から同時に出発します。
(1) A君とB君が反対方向に歩きます。2人の速度から、1分間に90+60=150mずつ(速度の和)離れていきます。この距離が1周分の600mになったときが、すれちがうときです。よって、600÷150=4 より、1回目にすれちがうのは4分後です。
また、2回目にすれちがうのは、1回目にすれちがった地点から、合わせてもう1周分進んだときですから、同じく4分後ですので、出発してからは、(4×2=)8分後です。
(2) A君とB君が同じ方向に歩きます。2人の速度から、1分間に90-60=30mずつ(速度の差)離れていきます(A君がB君に後ろから近づいている)。この距離が1周分の600mになったときが、A君がB君を追いこします。よって、600÷30=20 より、1回目に追いこすのは、20分後です。
また、2回目に追いこすのは、もう1周分の差がついたときですから、同じく20分かかります。よって、出発してから、(20×2=)40分後です。
1周300mの池のまわりを、兄と弟がそれぞれ一定の速さで同じ地点から同時に歩き出します。
2人が反対方向に歩くと、出発して3分後に出会いますから、300÷3=100 より、2人の速さの和は、分速100mです。
2人が同じ方向に歩くと、出発して15分後に兄が弟を追いこしますから、300÷15=20 より、2人の速さの差は、分速20mです。
速さの和と差がわかりましたので、和差算を利用します。(100+20)÷2=60 より、速い兄の速さは、分速60mで、60-20=40 より、弟の速さは、分速40mです。
池のまわりを、A君とB君が、同じ地点を同時に出発して、それぞれ一定の速さで同じ方向に何周も走ります。
出発して15分後に、A君がB君を2回目に追いこしたとき、A君は池のまわりをちょうど7周していますから、B君は(7-2=)5周したことになります。ここがポイントです。
B君の速さは分速130mですから、130×15=1950m進んだことになります。この距離が池のまわり5周分ですので、1950÷5=390 より、池のまわりの長さは390mです。
3人以上の旅人算を学習します。
1周900mの公園のまわりを、A君、B君、C君の3人が同じ地点を同時に出発して、それぞれ一定の速さで同じ方向に何周もします。A君は(5+4=)9分後にC君を追いこしますから、900÷9=100 より、A君とC君の速さの差は、分速100mです(A君が速い)。よって、C君の速さは分速150mですので、150+100=250 より、A君の速さは、分速250mです。
また、A君は5分後にB君を追いこしますから、900÷5=180 より、A君とB君の速さの差は、分速180mです(A君が速い)。A君の速さは分速250mですので、250-180=70 より、B君の速さは、分速70mです。
3600mはなれた2地点PQ間を、A君がP地点から、B君とC君がQ地点から、向かい合って同時に出発します。A君の速さは分速120mで、また、B君はC君より分速20m速いです。
(1) A君とB君が出会ったとき、C君はB君より360m後ろにいます。B君とC君が360mはなれるのは、360÷20=18より、18分後ですので、A君とB君がすれちがったのは、18分後です。
(2) 3600÷18=200mより、A君とB君の速さの和は分速200mとわかります。200-120=80 より、B君の速さは、分速80mです。また、80-20=60 より、C君の速さは、分速60mです。
(3) 3600÷(120+60)=20 より、A君とC君がすれちがったのは、20分後です。
2人の間の距離のグラフについて、学習します。
少し難しい内容です。できれば、2人それぞれの進み方を表す2本のグラフを同じグラフにかき直すと、第16回の問題になります。予習シリーズ184~185ページの説明が重要になります。
弟が家を出て、一定の速さで歩いて駅に向かい、兄も弟より何分かおくれて家を出て、一定の速さで走って駅に向かいました。このときの、2人の間の距離の関係がグラフで与えられている問題です。
予習シリーズ185ページの解き方にあるグラフで、グラフが折れ曲がっている点の原因を考えることがポイントです。
(1) グラフで、はじめの折れた点は、兄が家を出たことを表しています。グラフより、弟だけが6分で480m進んだことになります。480÷6=80 より、弟の速さ、分速80mです。
(2) グラフで、1つ目と2つ目の折れた点の間は、兄が弟に近づいていることを表しています。2人の距離の差が480mから360mに近づくのに、(9-6=)3分かかります。(480-360)÷3=40 で、2人の速さの差が40ですから、兄の速さは、80+40=120 より、分速120mです。
(3) グラフで、2つ目の折れた点のあと、2人の間の距離が早く近づいているのは、弟が駅に着いた(動いていない)からです。そして、横軸に着いたのは2人が出会ったことを表しています。つまり、兄も駅に着いたということです。
兄は、360m進んで駅に着きますので、360÷120=3 より、9分の後3分で駅に着きます。9+3=12 より、xは12です。
第17回は『倍数』です。倍数という言葉からも何倍かしてできる数であることがわかると思います。A÷B=C(A=B×C)の関係で、AはBやCの倍数です。
約数の場合と同様、倍数を求める、最小公倍数を求める連除法の使い方といった、基礎のトレーニングが今後の学習に必要となります。また、倍数の個数を求める計算もしっかり理解してください。
倍数をかき出したり、倍数の個数を求める問題です。
(1) 4の倍数は、4×○で求められますから、小さい方から順に3つ求めますと、4×1=4、4×2=8、4×3=12 となりますので、4、8、12です。
(2) 1から50までの整数の中の4の倍数の個数を求めます。4の倍数は4つ目ごとにありますから、50までの数を4つずつの組にした、各組のおわりに1個ずつあります。50÷4=12あまり2 より、4の倍数は12個あります。
(3) (2)と同様に考えます。100から200までの整数の中の6の倍数の個数ですから、(1~200)の中の6の倍数の個数から、(1~99)の中の6の倍数の個数をのぞきます。1から200までの中には、200÷6=33あまり2 より、6の倍数は33個あります。
1から99までの中には、99÷6=16あまり3 より、6の倍数は16個あります。よって、33-16=17 より、100から200までの整数の中には、6の倍数は17個あります。
公倍数と最小公倍数について学習します。予習シリーズ157、158ページの説明をよく読んで、理解しましょう。
公倍数の基本となる問題です。
(1) 9の倍数と12の倍数をかき出していき、等しい数がはじめて出てきたら、その数が最小公倍数です。答えは、36です。
(2) 「公倍数は、最小公倍数の倍数」です。公倍数の5番目は、最小公倍数に5をかけることで求めることができます。36×5=180より、小さい方からかぞえて5番目の公倍数は、180です。
すこし複雑な公倍数の問題です。公倍数の問題では、整数の集まりをグループに分けて表す図「ベン図」で考えると、理解しやすくなります。予習シリーズ159ページの解き方にあるベン図を参照してください。
(1) 6でわり切れる数は6の倍数です。同様に、9でわり切れる数は9の倍数です。よって、どちらでもわり切れる数は、6と9の公倍数です。(公)倍数の個数を求めますので、[例題1]で学習したように、わり算の商が求める個数です。
6と9の公倍数は、6と9の最小公倍数である18の倍数です。よって、100までの整数のうち18の倍数の個数を求めます。100÷18=5あまり10より、6でも9でもわり切れる整数は、5個です。
(2) 6でも9でもわり切れない整数は、ベン図を利用すると、エの部分になります。1~100の100個から、(ア+イ+ウ)の部分の個数をのぞきます。
・ア+ウ(6の倍数の個数) 100÷6=16あまり4 より、16個
・イ+ウ(9の倍数の個数) 100÷9=11あまり1 より、11個
・ウ(18の倍数の個数) (1)で求めた5個
ア+イ+ウ=16+11-5=22 より、22個ですので、100-22=78 より、エ(6でも9でもわり切れない数の個数)は、78個です。
最大公約数を求める場合に利用した、連除法を利用して最小公倍数を求めます。予習シリーズ160ページの説明をよく読みましょう。特に、例1と例2の違いに気をつけましょう。
連除法を使って、最大公約数と最小公倍数を求める問題です。解き方にある、それぞれを求める違いを理解して下さい。
倍数の利用の問題です。
A町行きのバスは、12分ごとに駅を出発します。また、B町行きのバスは、16分ごとに駅を出発します。午前7時に同時に駅を出発した後、同時に駅を出発するのは、(12の倍数)分と(16の倍数)分の共通である公倍数の時間(分)で、最小は最小公倍数である48分後です。
始発を入れて4回目は、始発後の48×(4-1)=144 より、144分=2時間24分後です。 よって、2つのバスが4回目に駅を同時に出発するのは、午前7時+2時間24分=午前9時24分 です。
われわれ中学受験鉄人会のプロ家庭教師は、常に100%合格を胸に日々研鑽しております。ぜひ、大切なお子さんの合格の為にプロ家庭教師をご指名ください。
頑張っている中学受験生のみなさんが、志望中学に合格することだけを考えて、一通一通、魂を込めて書いています。ぜひご登録ください!メールアドレスの入力のみで無料でご登録頂けます!