2月予約スタートダッシュキャンペーン!
第18回は『旅人算とグラフ(1)』です。旅人算は、2人以上の旅人(登場人物)が出会ったり、追いついたりするときの、速さ、時間、距離を考える問題です。ダイヤグラム(たて軸に距離を表し、横軸に時間を表したグラフ)も使用して考えます。旅人算の基本は、2人が出会う(近づく)問題であっても、反対方向に離れていく(遠ざかる)問題であっても、距離の和を考える問題では、2人の速度の和を考えます。また、距離の差を考える問題では、追いつく(近づく)問題であっても、同じ方向に離れていく(遠ざかる)問題であっても、2人の速度の差を考えます。
「必修例題1」は、距離の和を考える問題です。
「必修例題2」は、距離の差を考える問題です。
「必修例題3」も、距離の差を考える問題です。
旅人算を表すダイヤグラムについて学習します。右上がりのグラフと右下がりのグラフが同時に示されている場合は、出会いの問題です。この場合は、横軸の右方向にある(あとに出発した人の)出発時刻を元にしてグラフの間の距離を考えます。右上がりどうし右下がりどうしのグラフが同時に示されている場合は、追いつきの問題です。この場合も同様に、横軸の右方向にある出発時刻を元にしてグラフの間の距離を考えます。予習シリーズ168ページの図を参照して下さい。
「必修例題4」は、旅人算とダイヤグラムの問題です。
A君の動きを表す直角三角形では、距離(たての長さ)は1500m、時間(横の長さ)は(20−5=)15分ですから、1500÷15=100より、A君の速度は、分速100mとわかります。B君の動きを表す直角三角形では、距離(たての長さ)は1500m、時間(横の長さ)は25分ですから、1500÷25=60より、B君の速度は、分速60mとわかります。B君が出発して5分後のA君とB君の間は、1500−60×5=1200m離れています。よって、1200÷(100+60)=7.5より、7.5分後にすれちがいますから、B君が出発して5+7.5=12.5分、つまり12分30秒後に2人はすれちがいます。B君が出発してからの時間ですから、A君が出発する前の5分を加えることを忘れないようにしましょう。
「必修例題5」は、折り返しの旅人算です。太郎君と次郎君が、AB間を往復します。太郎君の方が次郎君より速いので、2人が出会うのは、太郎君がB地点を折り返したあとです。ですから、2人が出会うまでに進んだ距離の和は、AB間の往復の距離となります。距離の和を考えますから、速度も和を使うことになります。速度の和は、80+60=140で、24分たつと、140×24=3360より、AB間の往復の距離は、3360mです。よって、片道は、3360÷2=1680より、AB間の道のりは1680mです。予習シリーズ169ページの解き方にある図を参照してください。
第18回は『四角形の面積』です。予習シリーズ137ページから138ページにある、四角形の分類と性質をよく読み、四角形の種類および性質の関連を理解しておきましょう。
「必修例題1」は、四角形の内角について、角度を求める問題です。それぞれの四角形の角度の性質を考えて解きます。
平行四辺形、台形、ひし形の面積の求め方を学習します。これらの図形は、長方形を変化させてできた図形ですので、面積の公式も、長方形の面積の求め方から出発しています。
予習シリーズに書いてある、公式の成り立ちを理解して、必ず使えるようにしましょう。
また、底辺と高さの関係は、必ず、直角になっていることに注意してください。
「必修例題2」は、平行四辺形の面積を求める問題です。
平行四辺形の面積=底辺×高さです。よって、12×5=60より、面積は、60平方cmです。
「必修例題3」は、台形の面積を求める問題です。
台形の面積=(上底+下底)×高さ÷2です。上底とは上にある底辺、下底とは下にある底辺のことです。よって、(5+12)×6÷2=51より、面積は、51平方cmです。
「必修例題4」は、ひし形の面積を求める問題です。
ひし形の面積=対角線×対角線÷2です。2つある対角線のそれぞれの長さをかけて2でわります。よって、9×12÷2=54より、面積は、54平方cmです。
われわれ中学受験鉄人会のプロ家庭教師は、常に100%合格を胸に日々研鑽しております。ぜひ、大切なお子さんの合格の為にプロ家庭教師をご指名ください。
頑張っている中学受験生のみなさんが、志望中学に合格することだけを考えて、一通一通、魂を込めて書いています。ぜひご登録ください!メールアドレスの入力のみで無料でご登録頂けます!