2月予約スタートダッシュキャンペーン!
第9回は『規則性に関する問題』です。いろいろな数列について、ある数が何番目にあるか、また、何番目の数は何かを考える問題です。数列の種類によって、考え方が異なります。どんな数列なのか、どんなルールなのかを整理することを目標に学習しましょう。
「必修例題1」の数列は、階差数列といわれる数列です。この数列は、元の数列(第1数列)の前後の数の差の数列(第2数列)が等差数列になっているものです。
問題の数列は、(第1)数列の前後の数の差が、(第2数列で)1、2、3、4、…と等差数列になっています。言いかえると、第1数列の数は、初めの数である1に、第2数列の1、2、3、4、…を順に加えてできた数列です。つまり、第1数列の、初めの数である1に、第2数列の1番目の数1を加えて2、2に第2数列の2番目の数2を加えて4、4に第2数列の3番目の数3を加えて7、…というように並んでいます。
この仕組みにより、15番目の数は、第1数列のはじめの数である1に、第2数列の1番目の数から(15-1)番目までの数の和を加えることにより求められます。つまり、15番目の数は、1+(1+2+……+14)=1+(1+14)×14÷2=106です。等差数列の和の求め方を忘れていないかどうか、しっかり確かめておきましょう。
「必修例題2」は分数の群数列といわれる数列です。分数の群数列では、組(=群)ごとの分母、および個数を整頓しておくことが重要です。分母は、第1組から2、3、4、…となっています。また、個数は、第1組から1個、2個、3個、…となっています。なお、メルマガでは、分数は、分子/分母の形で表します。
「必修例題3」は、数列のきまりを発見することが難しい問題です。この数列は、条件(3と4の倍数を除いた数列)より、3と4の最小公倍数12を考え、1から順に、それぞれの数を12で割ったときの余りが、{1、2、5、7、10、11}の周期となる数を列にしたものです。よって、{1、2、5、7、10、11}を第1組として、以下{13、14、17、19、22、23}、{25、26、…}、…と、第1組のそれぞれの数に12を加えていく、各組の個数が6個となる群数列です。例えば、第2組の1番目は1+12=13、2番目は2+12=14、また第3組の1番目は1+12×2=25、…となります。
数表(数を使った表)の問題を学習します。少々難しい問題ですので、しっかり学習しましょう。
「必修例題4」は、四角数(ご石を正方形の形に並べたときの個数で、平方数とも言われます)の数表問題です。数の並び方から、各段の1番目の数が四角数(平方数)になっていることに気づきますか。1段目は1×1=1、2段目は2×2=4、3段目は3×3=9、…となっています。このように、同じ数を2回かけてできる数を平方数と言います。予習シリーズ87ページの解き方にある図を参照してください。
「必修例題5」は、三角数(ご石を三角形の形に並べたときの個数)の数表問題です。この数表は、右上から左下へ45度の角度の線上に数が増えています。そこで、各段の1番目の数に注目します。2段目は1+2=3、3段目は1+2+3=6、4段目は1+2+3+4=10,…となっています。このような数を三角数と言います。三角数は、等差数列の和を求めて作ります。なお、予習シリーズ88ページの解き方にある図を参照してください。
第10回は『総合』です。基本問題において、第6回から第9回までの基本が理解できているか、確認しましょう。なお、メルマガでは、分数は分子/分母の形で表します。また、帯分数は、A・B/Cの形と表します。
「基本問題第6回3」は、速さと比とつるかめ算を混合させた問題です。
A町からB町までは距離が等しいですから、速度比と時間比は反比例します。よって、徒歩:自転車の時間比 は、48:16=3:1で、逆比により、徒歩:自転車の速度比は、1/3:1/1=1:3です。徒歩の速さを毎分1とすると、48分をかけて、AB間の距離が1×48=48と考えます。自転車でA分、徒歩でB分進み、時間の合計は、A+B=24分で、距離の合計は48となります。ここで、つるかめ算を用いて、自転車で進んだ時間を求めます。(48-1×24)÷(3-1)=12より、自転車がパンクしたのは、A町を出発して12分後です。
「基本問題第7回3」は、A君とB君が、離れた2地点から向かい合って進み、往復する問題です。予習シリーズ別冊の「解答と解説」42ページの図を参照してください。A君とB君が1度目に出会った地点RはPからPQ間の4/7のところですから、PQ間の距離を7として、距離の比はPR:RQ=4:3です。
「基本問題第8回2」は、街灯の光による、棒の影の問題です。正確な図をかいて考えることがポイントです。予習シリーズ別冊の「解答と解説」42ページの図(特に、各点の記号)を参照してください。
「基本問題第9回2」は、分数の群数列です。組(群)としては、(1/1)、(1/2,1/2)、(1/3,1/3,1/3)、(1/4,…)、……となっています。
第9回は『方陣算』です。本来、方陣とは四角形のことです。ここでは、ご石を四角形だけでなく三角形・五角形など正多角形に並べたときの、1辺の個数、外周(一番外側の1周)の個数、図形全体の個数を考える問題を学習します。1辺の個数と外周の個数を考える場合、カドのご石の取り扱いが重要になります。
正方形の形や正三角形の形に、ご石をならべたときの個数を考えます。
「必修例題1」は、正方形の形にご石をならべた問題です。予習シリーズ69ページの解き方にある図を参照してください。
「必修例題2」は、正三角形の形にご石をならべた問題です。予習シリーズ70ページの解き方にある図を参照してください。
正多角形にご石を並べる場合のご石の個数を考えます。
「必修例題3」は、正多角形の方陣で、正六角形の形にご石をならべる問題です。
1辺4個の正六角形の形では、1辺が4-1=3個となる正三角形の形が6つできます。1辺3個の正三角形ひとつに含まれるご石の個数は、1+2+3=6個です。よって、6個の正三角形では、合計は6×6=36で、正六角形の中央の1個をくわえて、36+1=37より、この正六角形の形にぎっしりならんだご石は、全部で37個です。
ご石を、規則正しくならべるときの問題を考えます。
「必修例題4」は、あるきまりにしたがって、台形の形にご石をならべる問題です。
各図形の順番を表す番号と、各図形のいろいろな個数の関係を考えることが攻略ポイントとなります。問題に出ている図形がヒントとなります。
第10回は『総合』です。まずは、基本問題において、各回の内容を確認しましょう。
「基本問題第6回4」は、やりとりの問題です。やりとり前とやりとり後で、3人の持っているカードの合計まい数は変わらないことがポイントになります。合計は36まいですので、Aの最後のまい数は36÷3=12まいです。ここから、もとへもどしていきます。Bへわたした7まいを増やし、Cからもらった12まいをへらします。つまり、12+7-12=7より、はじめ、Aは7まいのカードをもっていました。
「基本問題第8回3(5)」は、分数の大きさくらべです。まず既約分数とはこれ以上約分できない分数であることを確認しておきましょう。4/5より大きく、7/8より小さい分母40の分数を考えますので、分母の数である5、8、40の最大公約数を分母とした通分をしてくらべます。分母は40となり、(4/5=)32/40から(7/8=)35/40の間の分数、33/40と34/40のうち、既約分数を求めます。34/40は約分できますので、よって、答えは、33/40です。
「基本問題第9回1(3)」は、長方形の形に並べたご石の外周の個数を求めます。
カドにあるご石に注意します。たて7個、横10個より、(7+10)×2=34から、重なっているカドの4個を引いて、34-4=30、よって、一番外側のひとまわりに並んでいるご石は、30個です。
「練習問題1」は、年令算です。内容を正しく整頓するためには図が有効です。予習シリーズ別冊の「解答と解説」31ページの図を参照してください。
父、母、子の年令の差を確認しておきます。父と母の年令差は父が4才上、母と子の年令差は、母が28才上です。よって、父と子の年令差は父が4+28=32才上です。
「練習問題4」は、多少難しいやりとり問題です。条件をよく読み取りましょう。
入園料3人分のうち半分出したということは、Cが出したのは1.5人分です。AとBがCにお金を返した分が、Cが余分に出した分ということになります。つまり、240+150=390円が、1.5-1=0.5人分ということです。よって、390÷0.5=780より、入園料の1人分は、780円です。
われわれ中学受験鉄人会のプロ家庭教師は、常に100%合格を胸に日々研鑽しております。ぜひ、大切なお子さんの合格の為にプロ家庭教師をご指名ください。
頑張っている中学受験生のみなさんが、志望中学に合格することだけを考えて、一通一通、魂を込めて書いています。ぜひご登録ください!メールアドレスの入力のみで無料でご登録頂けます!